## 第1問

x を実数とし

$$F = (x + 1) (x + 2) (x + 3) (x + 4) (x + 5) (x + 6)$$

とする。

一般に、実数yに対して

$$(x + y) (x + 7 - y) = x^{2} + 7x + y(7 - y)$$

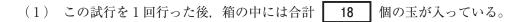
が成り立つから、 $x^2 + 7x = X$ とおくと

$$F = (X + 6) \left(X + \boxed{1, 2}\right) \left(X + \boxed{3, 4}\right)$$

と表すことができる。ただし 1,2 < 3,4 とする。

$$(1)$$
  $x=\frac{\sqrt{285}-21}{6}$  のとき  $X=\frac{5$ , 6, 7 であり、 $27F=9$ , 10, 11, 12 である。

$$(2)$$
  $p>-\frac{245}{4}$  をみたす実数  $p$  に対して、 $x=\frac{1}{2}\left(-7+\sqrt{49+\frac{4p}{5}}\right)$  のとき 
$$F=\frac{(p+30)\left(p+\boxed{13,14}\right)\left(p+\boxed{15,16}\right)}{\boxed{17}}$$


である。

## 第2問

箱の中に黒玉2個と白玉1個の合計3個の玉が入っている。次の試行を繰り返し行う。

| ( i | )箱の | り中から | 同時に | 2 | 個の玉を取 | ŋ | 出す。 |  |
|-----|-----|------|-----|---|-------|---|-----|--|
|-----|-----|------|-----|---|-------|---|-----|--|

- (ii) 取り出した2個の玉が同じ色ならばそのまま2個とも箱の中に戻し、異なる色ならば取り 出した玉のかわりに白玉2個を箱に入れる。
- (iii) 最後に黒玉を1個箱に追加しよくかき混ぜて、1回の試行を終了とする。



- (2) この試行を3回行った後,箱の中の黒玉の個数の最大値は **19** であり,白玉の個数の最大値は **20** である。
- (3) この試行を1回行った後、黒玉の個数が3個である確率は
   21

   22
   である。
- (4)この試行を2回行った後、白玉の個数が2個である確率は2324, 25
- (5) この試行を3回行った後の黒玉の個数が4個であるとき、この試行を1回行った後の白玉の個数が2個である条件付き確率は 26 である。

## 第3問

xy 平面上に、定点 A(0, a) と放物線  $y = -2x^2 + 3$  上の動点 P(t,  $-2t^2 + 3$ ) がある。線分 AP の長さを L とすると L は t の関数である。

(1)  $L^2$  を t を用いて表すと

$$L^{2} =$$
 28  $t^{4} - ($  29, 30  $-$  31  $a) t^{2} + ($  32  $a)^{2}$ 

である。

(2)  $t^2 = X$ とする。t が実数全体を動くとき、Xのとりうる値の範囲は $X \ge 33$  である。 よって L の最小値を m(a) とすると

• 
$$a \ge \frac{34, 35}{36}$$
 のとき  $m(a) = |37 - a|$ 
•  $a < \frac{34, 35}{36}$  のとき  $m(a) = \frac{\sqrt{38, 39 - 40}}{41}$ 

である。

## 第4問

四角形 ABCD において、AB = 2、BC = 3、CD = x、DA = 5 であるとする。四角形 ABCD はある円 P に内接している。

三角形 ABC, 三角形 ACD にそれぞれ余弦定理を用いることにより、 $\cos \angle$  ABC を x を用いて表すと

$$\cos \angle ABC = \frac{-\boxed{42, 43} - x^2}{\boxed{44, 45} + \boxed{46, 47} x}$$

である。

(1) 
$$x = 5$$
 のとき、 $AC = \frac{48, 49}{\sqrt{50, 51}}$ である。

また、円周角の定理により $\angle$ ABD =  $\angle$ CBD である。AC と BD の交点を E とするとき、方べきの定理から

である。

(2) x = 6 のとき

$$AB + CD = BC + DA$$

により、四角形 ABCD はある円 Q に外接している。

四角形 ABCD の面積は 
$$55$$
  $\sqrt{56}$  であり  $Q$  の半径は  $\sqrt{57}$   $\sqrt{58}$  である。